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Aims Post-procedure conduction abnormalities (CA) remain a common complication of transcatheter aortic valve im-
plantation (TAVI), highlighting the need for personalized prediction models. We used machine learning (ML), inte-
grating statistical and mechanistic modelling to provide a patient-specific estimation of the probability of developing
CA after TAVI.

...................................................................................................................................................................................................
Methods
and results

The cohort consisted of 151 patients with normal conduction and no pacemaker at baseline who underwent TAVI
in nine European centres. Devices included CoreValve, Evolut R, Evolut PRO, and Lotus. Preoperative multi-slice
computed tomography was performed. Virtual valve implantation with patient-specific computer modelling and
simulation (CM&S) allowed calculation of valve-induced contact pressure on the anatomy. The primary composite
outcome was new onset left or right bundle branch block or permanent pacemaker implantation (PPI) before dis-
charge. A supervised ML approach was applied with eight models predicting CA based on anatomical, procedural
and mechanistic data. CA occurred in 59% of patients (n = 89), more often after mechanical than first or second
generation self-expanding valves (68% vs. 60% vs. 41%). CM&S revealed significantly higher contact pressure and
contact pressure index in patients with CA. The best model achieved 83% accuracy (area under the curve 0.84)
and sensitivity, specificity, positive predictive value, negative predictive value, and F1-score of 100%, 62%, 76%,
100%, and 82%.

...................................................................................................................................................................................................
Conclusion ML, integrating statistical and mechanistic modelling, achieved an accurate prediction of CA after TAVI. This study

demonstrates the potential of a synergetic approach for personalizing procedure planning, allowing selection of the
optimal device and implantation strategy, avoiding new CA and/or PPI.
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Introduction

Transcatheter aortic valve implantation (TAVI) benefits patients
with aortic stenosis at high, intermediate, and low surgical risk.1–6

Notwithstanding continuous improvements in outcomes due to
advancement in catheter and valve technologies, as well as increase
in experience, the occurrence of new conduction abnormalities
(CA) and, consequently, new permanent pacemaker implantation
(PPI) remains a clinical problem. The occurrence of new onset left
bundle branch block with first generation valves was reported to
vary between 4% and 65%.7 Acknowledging institution-dependent
variables affecting PPI, an incidence varying between 2% and 51%
was observed in a meta-analysis of 41 studies.8 Patient, procedure/
operator, and device related factors have been shown to help esti-
mate the risk of a new CA after TAVI on a population level, but
the contribution of each factor in the individual patient remains
unknown, highlighting the need for a more personalized approach
in routine planning.

Artificial intelligence is increasingly used to enhance the quality and
efficacy of the planning, execution and evaluation of complex cardiac
interventions such as TAVI.9 In parallel, developments in mechanistic
models allows the addition of physiology and physics for a more pro-
found identification of the mechanisms of cardiac disease and compli-
cations following medical interventions.10 Recently, the synergy
between statistical and mechanistic models, combining inductive and
deductive reasoning, has been suggested for the realization of preci-
sion medicine—more accurate diagnosis, treatment decision-making
and, hence, prognosis.11 In this context, the entanglement of the

mechanisms leading to CA after TAVI presents an appropriate chal-
lenge for such a tailored approach (Figure 1). The aim of this study
was to develop and evaluate a patient-specific model predicting new
CA after TAVI using machine learning (ML), combining statistical and
mechanistic modelling.

Methods

Patient cohort
The retrospective index cohort consisted of 189 patients who had under-
gone TAVI in nine European centres. Patients with abnormal ECG [left/
right bundle branch block (L/RBBB)] and/or permanent pacemaker be-
fore TAVI (n = 38) were excluded. Therefore, the final study cohort
included 151 patients who were treated with the self-expanding
CoreValve, Evolut R, and Evolut PRO valves (n = 107, Medtronic, MN,
USA), or the mechanically expanding Lotus valve (n = 44, Boston
Scientific, MA, USA). All patients were discussed in the multidisciplinary
heart team. Valve type selection was based upon discretion of the oper-
ator/institution, whereas valve sizing was based upon multi-slice com-
puted tomography (MSCT) derived baseline aortic root anatomy using
the manufacturing sizing matrix, as described before.12 The primary and
dependent outcome of interest was the occurrence of a new L/RBBB
and/or PPI before discharge. All patients provided written informed con-
sent for TAVI and the use of anonymous clinical, procedural, and follow-
up data for research. The study was executed according to the
Declaration of Helsinki, was approved by the ethics committees of all par-
ticipating centres and did not fall under the scope of the Medical
Research Involving Human Subjects Act.
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Anatomical measurements and patient-

specific mechanistic modelling
Preoperative MSCT was used for procedure planning and simulation. In-
plane and through-plane resolution ranged from 0.31 to 0.97 mm/pixel,
slice increment from 0.25 to 0.8 mm, and slice thickness from 0.5 to 1.5
mm. For the purpose of simulation, the MSCT of every patient was
assessed and analysed by an independent simulation expert (FEops, Gent,
Belgium). Some patients were excluded based on the following criteria of
MSCT image quality: insufficient contrast, substantial movement in the
aortic root and streaking artefacts, low planar scanning resolution, MSCT
slice thickness higher than 1.5 mm, or slice increment higher than 0.9 mm.
Furthermore, for this specific study, it was necessary to identify the mem-
branous septum, thus patients whose images did not allow it were
excluded. Quantification of the base of the aortic root (i.e. annulus and
left ventricular outflow tract) including the inferior border of the mem-
branous septum (IBMS) length, IBMS angulation with respect to the annu-
lar plane, and the shortest distance of the membranous septum (P3) to
the annular plane were performed as previously described (Figure 2A and
ref.12) The valve sizing index was calculated as the ratio between the
nominal device diameter and the perimeter-derived annular diameter.
Post-implantation angiograms were analysed to measure the depth of im-
plantation (DOI)—defined as the average of the distance between the
proximal (i.e. inflow) edge of the valve frame and the aortic annular plane
on the non-coronary and the left coronary cusp side.12

A three-dimensional model of the aortic root was generated using
MSCT. Finite element analysis was used to simulate valve implantation
into the reconstructed anatomy: all steps of the actual implantation
including the DOI were respected and the contact pressure exerted by

the frame on the anatomy was computed.12,13 Of note, the segmented
calcifications were included, thus accounting for their presence and spe-
cific location as well as mechanical properties. For the scope of the study
(i.e. prediction of new CA), a region of interest (ROI) in which the con-
duction tissue is located was identified and consisted of the area defined
by the IBMS and a plane 15 mm below the annular plane, inferiorly (Figure
2B). In this ROI, maximum contact pressure (Cpmax (MPa)) and contact
pressure index (CPI, i.e. the percentage of the ROI subjected to contact
pressure) were calculated (Figure 2C and ref.12). Further details of the
modelling strategy are specified in Supplementary material online,
Methods.

Statistical modelling and machine learning
Anatomical (n = 3; IBMS length, IBMS angulation, and the distance of P3 to
the annular plane), procedural (n = 3; device type, sizing index, DOI), and
mechanistic variables (n = 2; Cpmax, CPI) were included as the ML input.
The analysis was conducted using the scikit-learn package (v 0.20.4) for
Python. A scheme illustrating the central ML methodology is shown in
Figure 3.

A preliminary exploratory data analysis was performed to investigate
variable distributions (Supplementary material online, Figure 1S).
Categorical variables (e.g. device type) were one hot encoded and nu-
merical ones were normalized to a 0 to 1 scale as is common practice
when data presents different value ranges. Additionally, feature (i.e. vari-
able) selection was performed to search for highly correlated uninforma-
tive features: in this case, none of the eight features were correlated to
another significantly and all were retained. After preprocessing, a super-
vised learning approach was applied: the cohort was split into training and

Figure 1 A personalized approach to risk stratification in TAVI planning using the combined synergy of mechanistic and statistical modelling.
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.validation sets (70–30%)—taking into account the distribution of categor-
ical variables, that is, ensuring the presence of samples for each of the
three devices in both sets. The training set was used to train the base clas-
sifiers (i.e. single classification algorithms) with five-fold cross-validation.
We chose algorithms typically used for supervised binary classification,
whose technical concepts have been described elsewhere14,15: (i) K-
Nearest Neighbour Classifier, (ii) Logistic Regression, (iii) C-Support
Vector Classification, (iv) Gaussian Naive-Bayes, (v) Support Vector
Machine with Stochastic Gradient Descent (SGD) learning, (vi) Extreme

Gradient Boosting Classifier, (vii) Decision Tree Classifier, and (viii)
Random Forest Classifier. The trained base classifiers were then com-
bined homogeneously (i.e. bootstrap aggregation) or in a mixed fashion
(i.e. voting) and subsequently tested on the validation set. A more
detailed explanation of the two ensembling techniques is available in the
Supplementary material online. The optimal model was chosen based on
accuracy and receiver operator characteristics (ROC) curves were con-
sidered with the corresponding area under the curve (AUC). On top of
the usual statistics considered [sensitivity, specificity, positive predictive

Figure 2 Identification of anatomical landmarks and mechanistic modelling workflow. (A) Identification of the inferior border of the membranous
septum (IBMS) using preoperative MSCT images. P1 and P3 are landmarks selected at the beginning and end of the IBMS (white arrows), whereas P2
is an additional point in between to better track the course of the IBMS. The length of IBMS is calculated as the distance from P1 to P3. The angle be-
tween the segment connecting P1 and P3 and the annular plane is marked with a. The distance of P3 from the annular plane is marked with D3. (B)
The region of interest for contact pressure analysis is defined by the area between the IBMS (extended towards the RCC by a 25� angle12) and the
plane 15 mm below the annular level, to ensure inclusion of the proximal part of the left bundle branch. (C) A scheme showing the workflow of
mechanistic modelling. A valve with known frame dimensions and mechanical properties is selected and virtually implanted into the patient-specific
aortic root anatomy reconstructed from MSCT images. The device-host interactions are assessed—including aortic wall deformation and the result-
ing contact pressure exerted by the frame on the surrounding anatomy. The figure is based on ref.12 MSCT, multi-slice computed tomography;
NCC, non-coronary cusp; RCC, right coronary cusp.
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.
value (PPV), negative predictive value (NPV)], F1-score (harmonic mean
of PPV and sensitivity) was taken into account as an indication of overall
performance of the model.

To determine the importance of mechanistic variables in the predic-
tion of CA, we evaluated their influence by testing the predictive power
excluding Cpmax and CPI, as compared to the full model. Furthermore,
using all variables, we assessed the performance for predicting L/RBBB
only in a sub-cohort (n = 119), excluding patients who received a PPI after
TAVI: in this case, the models were re-trained and the most accurate was
selected.

Statistics and outcome analysis
Continuous variables are expressed as mean ± standard deviation or me-
dian and interquartile range based on their distribution evaluated by the
Shapiro–Wilk test. The categorical variables are expressed as number
and percentage. Valve technology was differentiated into three catego-
ries: CoreValve, Evolut R/PRO, and Lotus—the former two being self-
expanding and the latter mechanically expanding. Differences between
groups were analysed for statistical significance with the Student’s t-test
when comparing variables with normal distribution and the Mann–
Whitney test for non-normally distributed variables. Contingency tables
and a Chi-square test or Fisher’s exact test were used for categorical
data.

Results

Cohort characteristics and patient-
specific simulation results
Anatomical and procedural details are summarized in Table 1. The
majority of patients received the first generation self-expanding
CoreValve (55%), 16% received the second generation Evolut R/
PRO. The mechanically expanding Lotus valve was used in 29%. A
total of 89 patients (59%) developed new CA after TAVI, which was
more frequent after mechanical (30/44, 68%) than after the first (50/
83, 60%) or second generation (9/24, 37%) self-expanding valve im-
plantation. Computer modelling and simulation (CM&S) revealed a
significantly higher Cpmax (about two-fold median value) and CPI
(about three-fold median value) in patients with new CA as com-
pared to patients without (Figure 4, Table 2).

Machine learning for prediction of
conduction abnormalities
The ensemble models were compared based on accuracy score: the
homogeneous ensemble (bootstrap aggregation) of K-Nearest
Neighbour showed the best performance with 83% accuracy and

Figure 3 A scheme explaining data selection, preprocessing, supervised machine learning approach and post-processing.
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....................................................................................................................................................................................................................

Table 1 Characteristics of the population

Parameter All patients (n 5 151) CA, N 5 89 (59%) No CA, N 5 62 (41%) P-value

Anatomical

Annular diameter,a mm 24.06 ± 2.04 24.39 ± 2.10 23.60 ± 1.87 0.018

IBMS length, mm 10.07 ± 3.38 10.06 ± 3.64 10.09 ± 2.98 0.947

IBMS angle (a), � 19.55 ± 17.80 21.67 ± 16.91 16.50 ± 18.74 0.079

Depth of P3 (D3), mm -2.10 ± 2.27 -1.87 ± 2.30 -2.44 ± 2.20 0.126

Pre-procedural

Depth of implantation (DOI),b mm 6.26 ± 4.13 7.30 ± 3.91 4.79 ± 4.02 <0.001

Device type 0.047

CoreValve (CV) 83 (55) 50 (56) 33 (53)

Evolut R/PRO (ER/EPRO) 24 (16) 9 (10) 15 (24)

Lotus (LT) 44 (29) 30 (34) 14 (23)

Device size 0.462

CV 26 29 (20) 17 (20) 12 (21)

CV 29 48 (32) 28 (31) 20 (32)

CV 31 6 (4) 5 (6) 1 (2)

ER/EPRO 26 9 (6) 2 (2) 7 (11)

ER/EPRO 29 15 (8) 7 (4) 8 (13)

LT 23 11 (7) 5 (6) 6 (10)

LT 25 18 (12) 12 (13) 6 (10)

LT 27 15 (10) 13 (15) 2 (3)

Sizing indexc 1.14 ± 0.10 1.12 ± 0.09 1.15 ± 0.10 0.081

Post-procedural

RBBB 1 (0) 1 (1) 0 (0)

LBBB 78 (52) 78 (88) 0 (0)

PPI 32 (21) 32 (36) 0 (0)

Values are given as mean ± standard deviation or n (%). Percentages refer to the total reported in the first row (e.g. N = 89 for the CA column).
IBMS, inferior border of membranous septum; LBBB, left bundle branch block; RBBB, right bundle branch block.
aPerimeter-based diameter = annular perimeter/p.
bImplantation depth assessed in postoperative angiograms: distance from the aortic annular plane on the NCC side to the deepest level of the most proximal edge of the device
frame (NCC: non coronary cusp).
cNominal device diameter/annular diameter.

Figure 4 Results of the simulations stratified by occurrence of conduction abnormalities. Boxplots of maximum contact pressure (left) and contact
pressure index (right). Numerical values are reported in Table 2.
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..sensitivity, specificity, PPV, NPV, F1-score, and AUC of 100%, 62%,
76%, 100%, and 82% and 0.84, respectively (Table 3). The ROC
curves of the four most accurate models are shown in Figure 5.

A sharp decrease in accuracy was observed when excluding
Cpmax and CPI as features, with the best ensemble (Support Vector
Machineþ SGD) having 67% accuracy and 0.72 AUC. The results for
this sub analysis are reported in Supplementary material online, Table
1S.

The analysis of the prediction of only L/RBBB in the sub-cohort of
patients of 119 who underwent TAVI and did not receive a new PPI
after TAVI, revealed the highest accuracy when using the Support
Vector Machine þ SGD (75% with 0.77 AUC—Supplementary ma-
terial online, Table 2S).

An overview of all the analyses and related performance is
reported in Supplementary material online, Figure 2S.

Discussion

In this multicentric study, we demonstrate the synergy of statistical
and mechanistic modelling in predicting new CA after TAVI. The in-
dependent variables derived from patient-specific mechanistic mod-
elling, reflecting the interaction between device and host (i.e. contact
pressure), were highly predictive of CA. Also, ML-based statistical
modelling helped to enhance the predictive ability through the inte-
gration of these mechanistic markers with the traditional patient and
procedure-related predictive variables. Noteworthy, the prediction
ability of the herein proposed model was not only true for the com-
posite of new L/RBBB and new PPI (primary objective of study) but
also for new L/RBBB as single endpoint.

The findings of this study need to be interpreted in the light of sam-
ple size, patient demographics and valve technology. The cohort of
151 patients was predominantly treated with the first generation self-
expanding (55%) or the recently withdrawn mechanical expanding

valve (29%). Yet, it goes without saying that the proposed model can
in principle be applied to any valve technology. New CA (i.e. L/RBBB
and new PPI) occurred in 89 out of the 151 patients (59%). The fre-
quency of new CA after the implantation of the first generation self-
expanding CoreValve and the mechanically expanding Lotus valve is
in accordance with previously reported clinical observations.8,12,16

This also holds for the Evolut platform of which the Evolut R and
Evolut PRO only differ in sealing skirt (affecting paravalvular leak) but
not in design and mechanical behaviour.17,18

ML-based prediction of new CA and/or PPI is subject to recent re-
search with varying degrees of performance. Gomes et al reported
an AUC of 0.61 for ML-based prediction of new PPI after TAVI.19

Similarly, low accuracy of PPI prediction was seen in a gradient boost-
ing model incorporating 141 heterogeneous demographic, clinical,
ECG, and imaging variables (AUC 0.66).20 A performance compar-
able to our model, was achieved by Truong et al.21 using a random
forest algorithm incorporating baseline ECG, device-related and
imaging variables (AUC 0.88). Reasons for disparity in performance
in this field of ML-based prediction modelling are multifold. A high-
quality dataset consisting of sufficient heterogeneous/multidimen-
sional data as well as the selection of relevant variables are important
for model performance. Nevertheless, the generation of novel varia-
bles, such as mechanistic ones—as shown in this study—may en-
hance the predictive power, reduce the number of variables needed
and thus increase clinical applicability.

Predicting conduction abnormalities
through the synergy of statistical and
mechanistic modelling
Patient-specific CM&S allows the assessment of the interaction be-
tween the device and host, generating mechanistic variables that in-
corporate all the factors playing a role in the injury to the conduction
tissue—such as calcifications, sizing, etc. These variables have shown
to be predictive of new CA after TAVI.12,13,17 It is clear that the

....................................................................................................................................................................................................................

Table 2 Computer modelling and simulation results

Parameter All patients (n 5 151) CA, n 5 89 (59%) No CA, n 5 62 (41%) P-value

Maximum contact pressure (MPa) 0.45 (0.26–0.67) 0.55 (0.41–0.79) 0.30 (0.06–0.56) <0.001

Contact pressure index (%) 22 (8–37) 28 (18–44) 10 (1–26) <0.001

Values are given as median (interquartile range).

....................................................................................................................................................................................................................

Table 3 Relevant statistics for the four most accurate algorithms

Model Accuracy Sensitivity Specificity PPV NPV F1-score AUC (95% CI)

K-Nearest Neighbours 83% 1.00 0.62 0.76 1.00 0.82 0.84 (0.69–0.95)

Logistic Regression 80% 0.96 0.62 0.75 0.93 0.83 0.80 (0.70–0.96)

Support Vector Machine þ SGD 78% 1.00 0.52 0.71 1.00 0.83 0.81 (0.69–0.95)

Gaussian Naive-Bayes 76% 0.84 0.67 0.75 0.78 0.82 0.77 (0.69–0.95)

AUC, area under curve; NPV, negative predictive value; PPV, positive predictive value.
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addition of mechanistic parameters to the model comes with the
computational cost, but also increases accuracy. In fact, excluding
those from the primary model, the predictive power decreased
(Supplementary material online, Table 1S).

Statistical modelling, through ML or traditional statistical classifica-
tion algorithms, can improve the prediction of mechanistic variables
by combining those with other, traditionally available parameters. In
classification tasks such as prediction of adverse events, the selection
of tools used in traditional statistical modelling is expanded by ML
algorithms, enabling to find the optimal model for the dataset at
hand.22 In our study, predictors of CA were: descriptors of the aortic
valve and ascending aorta (i.e. the shortest distance of the membran-
ous septum to the annular plane (P3), length and angulation of IBMS
(length of IBMS was previously observed as strong predictor of atrio-
ventricular block23 and PPI18), procedure-related parameters (i.e.
valve type, size and DOI), and mechanical properties of the implanted
device.24,25 The added value of ML integration enhanced the
observed predictive power based on mechanistic variables only,
where statistical univariate and multivariate analyses on subsets of
our cohort revealed accuracy of 76% and 77% for CPmax and CPI in
CoreValve and Evolut R valves,12 and analogously 75% and 71% in a
subset with Lotus valve alone.13

We believe that the synergy between statistical and mechanistic
modelling helps the development of patient-tailored, personalized or
precision medicine.11 Clinicians are becoming gradually familiar with
ML-based approaches, yet, mechanistic modelling is still a niche con-
cept in clinical medicine. Mechanistic models allow the extraction and
combination of patient-specific biomarkers that stem from computer
simulations such as herein reported (i.e. patient-specific interaction
of valve with MSCT derived anatomy). The value of such a combined
approach has—among others—been demonstrated in cardiac
resynchronization therapy26 and hypertrophic cardiomyopathy.27 In
case of aortic valve disease, such an approach can be applied pro-
spectively in order to provide a tailored prediction of adverse events
and, thus, improve patient selection, procedure planning and execu-
tion by modelling all relevant parameters before the procedure (de-
vice type and size as well as DOI).

Limitations
The presented model stems from a medium-sized cohort from nine
European centres. The number of variables included in the analysis is
limited by the retrievability of data. Information on demographics,
comorbidities, baseline clinical variables, and echocardiograms was
not available for the complete cohort and were, therefore, not used
as additional (candidate) predictors in the modelling. Similarly, the
exact timing of L/RBBB insurgence or PPI—periprocedurally or after
discharge—was not available. On the other hand, data from MSCT
imaging, with detailed anatomical descriptors of the aortic valve and
ascending aorta, was paired with case-specific mechanistic modelling.
Validation of the model using an external data set has not been
performed.

The composite outcome of L/RBBB and PPI is hindered by the vari-
ability in clinical decision-making of PPI between and within centres.
Therefore, we performed an additional analysis to predict the out-
come of L/RBBB as the only independent outcome-measure in the
sub-cohort of patients who underwent TAVI free from new PPI after
procedure, showing slightly lower accuracy when applying this more
robust endpoint.

As far as the computational modelling is concerned, although it
would be more appropriate to consider distributions of the mechan-
istic parameters at varying implantation depths and device rotation,
this would be computationally too expensive, especially in the per-
spective of a larger dataset.

In order to confirm the generalizability of our findings, a more
comprehensive dataset featuring additional parameters such as age,
gender, body surface area, and other common clinical variables will
be needed.

Lastly and as mentioned above, most patients were treated with
the first generation CoreValve and the recently withdrawn
mechanical-expanding Lotus valve. Few patients were treated with
currently used self-expanding valves. Balloon-expandable valves were
not included. Yet, the model herein proposed does not depend on
the valve technology itself but can be applied to any commercial
device.

Conclusions

Combining statistical and mechanistic modelling helps the develop-
ment of patient-specific prediction of adverse events after TAVI.
Through data integration with traditional predictors of CA, ML-based
classification models enhance the predictive ability of patient-specific
mechanistic modelling. We believe that application of the presented
method applied on prospective patients in the future may help the
physician to select the device that best fits the individual patient and
implantation strategy.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.

Consent: All patients provided written informed consent for TAVI
and the use of anonymous clinical, procedural, and follow-up data for
research.

Figure 5 Receiver operator characteristic curves for the four
most accurate algorithms.
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